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ABSTRACT 

Situation awareness (SA) has garnered much recent attention in the human factors community. 
SA inherently requires a systems perspective, as it concerns the degree of adaptive coupling 
between human cognition and an external environment. As such, we present an SA modeling 
approach giving equal attention to both the cognitive and external components of a human-
environment system, in the realm of interface-mediated, uncertain judgment. The model allows 
SA in these contexts to be decomposed into seven measurable components. Importantly, we 
discuss how the model and measures map onto, and thus complement, theories of SA (e.g., 
Endsley), Human-Automation Interaction (e.g., Parasuraman, Sheridan & Wickens). and 
Naturalistic Decision Making (e.g., Klein). A companion article describes the first empirical 
evaluation of the utility of this modeling and measurement approach. Our central goal is to 
enhance theory and measurement of SA in support of design and training interventions. 
 

  
 



INTRODUCTION 

 Situation awareness (SA) has garnered much recent attention in the human factors and 
cognitive engineering communities (e.g., Adams, Tenney and Pew, 1995; Durso and Gronlund, 
1999; Endsley and Garland, 2001; Wickens, 2002). This is not surprising, as information 
technology and automation in contemporary workplaces increasingly mediate the interaction 
between a human (or team) and the task environment which constitutes the target of work and 
performance. Although there are many dimensions to this phenomenon, and its role depends on 
the specifics of environment and task, few would disagree that continued scientific advances into 
understanding and supporting SA are sure to depend on advances in measurement. Salas, Prince, 
Baker, and Shrestha (1995) summed up the situation well: “a central problem in understanding 
situation awareness is the lack of well-developed measurement tools” (p. 131).  

 Our goal in this article is to present a technique for modeling and measuring a phenomenon 
we believe to lie at the crux of SA in a wide variety of task situations of interest to human 
factors: human judgment under uncertainty in conditions where judgment is mediated by a 
technological interface (e.g., a display of a remote system, situation, or environment). These 
assessments can be of either past, present, or future situations or events, and are based on the use 
of local, or proximal, information sources (such as those presented on an interface display) to 
infer a the existence of a situation, state or event present in a remote, or distal, task environment.  

Theoretical Background and Purpose 

 The methods we present have a systems, or ecological orientation, in that the intent is to 
capture both the cognitive and environmental (external to the performer) determinants of SA. 
While the majority of SA research has focused on the former, we agree with Pew (1995), who 
noted that "In order to adequately define SA we need to understand what we mean by a 'situation' 
and we need to know what it is about situations of which we must be aware" (p. 7). Consistent 
with this view, the methods we present are based on assumption that SA, as a relation between 
human cognition and an external situation, must be defined, modeled, and measured as such. 

 The measurement techniques we present, while somewhat new to human factors, and 
certainly new to the study of SA, are based on a long history of research and modeling in 
psychology, and more recent techniques borrowed from the weather forecasting literature. We 
present a model of the judgmental aspects of interface-mediated SA, resulting from the 
cumulative research of Brunswik (1956), who provided his lens model of judgment, the research 
of Hursch, Hammond, and Hursch (1964) and Tucker (1964), who provided a mathematical 
formulation for Brunswik’s model, the research of Murphy (1988), who developed a diagnostic 
measure of weather forecasting skill, the research of Stewart (1990), who married the lens model 
equation with Murphy’s skill measure, and finally, the research of Stewart and Lusk (1994), who 
supplemented the previous research by providing resources for describing the contribution of 
sensing and information processing technology for modeling interface-mediated judgment. 

 In this article, we present these systems-oriented, ecological techniques in the hopes they 
may provide an advance in the measurement and support of situation awareness. Importantly, we 
also provide information on how these methods connect to, and complement, related theories of 
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SA (e.g., Endsley, 1995a, 1995b), Naturalistic Decision Making, or NDM (e.g., Klein, 1999), 
and Human-Automation Interaction, or HAI (Parasuraman, Sheridan and Wickens, 2000).  

SA: COGNITIVE AND ECOLOGICAL APPROACHES 

 As the term itself suggests, situation awareness is a relational construct, requiring study of 
not only the contribution of cognition (e.g., perception, memory, knowledge, etc.), but also the 
contribution of the environment, as highlighted in Pew’s comment in the previous section. 
Uncertain environments illustrate this point clearly, as the predictability of an environment 
places a constraint on the level of SA theoretically possible. If one’s task was to maintain SA 
over a coin flipped in a locked room, outside one’s presence, the upper bound (on average) for 
SA would be one-half. This can be learned prior to considering any psychological issues. In this 
case, the environment has irreducible uncertainty, and this uncertainty places a ceiling on SA.  

Conceiving SA: An Awareness Focus 

 Despite the observations above, it is fair to say that more attention has been paid to the 
awareness (cognitive) aspects of SA than to its environmental aspects. A proponent of research 
with this orientation has been Endsley, who has studied SA within the contexts of automation 
(Endsley, 1996), air traffic control (Endsley and Smolensky, 1998), and naturalistic decision 
making (Endsley, 1997), among others. Informally, she notes that SA concerns “knowing what is 
going on” (Endsley, 1995b, p. 36).  More precisely, she defines SA as "the perception of the 
elements of the environment within a volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future" (Endsley, 1995b, p. 36). 

 The above definition describes SA as a three-level concept comprising elements of 
perception, comprehension, and projection. Endsley describes Level 1 SA as knowledge that 
results from the perception of disjointed “elements” in the environment, in which an element is 
equated with environmental objects and attributes. Level 2 SA, which is typified as a mental 
picture, is described as a comprehension of the situation, or an understanding of its current 
significance.  Level 3 SA is described as the ability to predict future states of Level 1 elements.  

 Like Endsley, other researchers have been drawn to focus largely on the awareness, or 
cognitive side of SA, and thus have defined SA as a mental picture or an internal product.  For 
example, in the context of land navigation, Wesler, Marshak, and Glumm (1998) equate SA to 
the contents of short-term memory. In aviation, Gibson and Garrett (1990) describe SA as a 
Gestalt-like appreciation of a situation, and Taylor (1990) describes SA as a "veridical model of 
reality" (p. 3-1), 

Conceiving SA: An Ecological Focus 

 Other researchers have promoted more systems-oriented, ecological definitions of SA. For 
example, Flach (1995) states that “SA defines the problem of human performance in terms of 
understanding the adaptive coupling between human and environment” (p. 153). He introduces 
the notion of correspondence to emphasize that "the human's awareness must correspond to the 
objective constraints of the situation" (p. 151). Smith and Hancock (1995) also promote an 
ecological focus, relying on Neisser's (1996) perceptual cycle to shape their definition. In their 
proposal, Smith and Hancock focus on elaborating the environmental components of SA. They 
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do so by via Gibson’s (1979) “invariant” concept, to denote the meaningful environmental 
features or constraints to which a person must adapt in order to achieve SA. 

 As discussed previously, Pew (1995) also points toward an ecological perspective on SA. 
Pew introduces two definitions, ideal and obtainable awareness.  He defines ideal awareness as 
the awareness possible after all known information and knowledge requirements are satisfied. He 
then defines obtainable awareness as the level of ideal awareness possible after accounting for 
limitations in both knowledge and information.   To return to our coin flipping example, imagine 
that a coin was flipped in one’s presence, and one was asked for one’s “awareness” of the 
outcome. In this case, both ideal and attainable awareness would be maximized, at least for those 
with the visual ability to view the outcome and the linguistic ability to report the outcome.  

 If the coin, however, were flipped in another, locked, room. and no relevant information 
pertaining to the outcome was available, both ideal and attainable awareness would fall to one-
half. Imagine an example between these two extremes: If the coin was flipped in your presence 
but at some distance, ideal awareness would be perfect, and attainable awareness would depend 
on its distance and your visual discrimination ability. As you walk toward the coin in order to 
directly inspect it, obtainable awareness would rise to the level of ideal awareness. 

SA MODELING AND MEASUREMENT: A SYSTEMS APPROACH 

 Brunswik's (1956) ecological perspective on judgment under uncertainty is the initial basis 
for a model of the judgmental components of situation awareness (for a discussion of the 
relationship between Brunswikian theory and human factors, see Kirlik, 2000).  Consider Figure 
1, which depicts the basic components of both Brunswik’s theory of judgment. and interface-
mediated situation awareness. 

����
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����
����
����
����
����
����
����

Situation
(Environment)

Awareness
(Operator)

Information
(uncertainty)

Awareness of the situation

 

Figure 1.  Brunswik’s general representation of judgment or mediated SA 
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 The left side of the Figure 1 depicts the situation, or what Brunswik referred to as the 
environment, and the right side of the figure depicts awareness, or what Brunswik referred to as 
the organism (we shall use “operator”).  Mediating the situation-awareness relationship, or 
generally the environment-organism relationship, are both information and the uncertainty that 
accompanies it (i.e., the degree to which the information is capable of adequately specifying the 
state of the remote, or distal, situation or environment). Brunswik (1956) originally proposed 
measuring the quality of judgment in terms of a correspondence between the judged situation an 
the actual, environmental situation, measured by linear association, or bivariate correlation. Thus 

the measure of achievement is obtained by correlating the operator's judgments with the true 
states of the situation being judged.  Denoting this correlation coefficient rYO, where the 
subscripts represent the contribution of the operator's judgment (Y) and the situation or “Object” 
of judgment (O), the higher the correlation (0 ≤ rYO ≤ 1), the better the correspondence, the better 
the operator's achievement, and the better the SA. 

Limitations of the Correlation Coefficient 

 Although the correlation coefficient provides a useful measure of correspondence, it has 
properties that limit its sensitivity, and thus utility, for measuring judgment quality (Cronbach 
and Gleser, 1953).  Correlation captures only shape differences between two sets of variables, 
i.e., their shared pattern of ups and downs, without distinguishing the differences in either their 
magnitude or scale. A depiction of the correlation coefficient's insensitivity to both magnitude 
and scale is shown in the graphs in Figure 2.  Note that the correlation is 1.0 in all four graphs. 

 Graphs (a) and (b) in show a difference in magnitude not captured by correlation. Graph (a) 
depicts a relationship between judgments (e.g., predicted distance of an approaching aircraft) and 
the true state of the situation (e.g., true distance of an approaching aircraft).  In this case, average 
judgment is 11 (miles).  Graph (b) shows another set of judgments for the same situation, but 
with an average judgment of 80 (miles).  This inability of correlation to distinguish between 
these cases is evidence of the insensitivity of correlation to differences in magnitude.  Graphs (c) 
and (d) in Figure 2 show a difference in scale not captured by linear correlation.  In graph (c), 
judgments of a situation have a standard deviation of 5.9 (miles), while in graph (d), the standard 
deviation is 17.7 (miles), indicating the insensitivity of correlation to differences in scale. 
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Figure 2. Insensitivity of the correlation coefficient to magnitude and scale 

Absolute Distance Measures of Judgment Quality 

 These deficiencies of the correlation coefficient have motivated several researchers to look 
for more sensitive measurements of judgment correspondence.  One alternative has been to look 
at the distance between data sets rather than their shared shape, a strategy often found in studies 
of meteorological forecasting (e.g., Murphy, 1988). Mean Square Error (MSE), a measure of the 
squared Euclidean distance between two data sets (Cooksey, 1996), has been regularly adopted 
for this purpose (e.g., Lee and Yates, 1992; Stewart and Lusk, 1994).  MSE defines distance 
using the following equation, 

( ) ( )∑ −=  OYn
1MSE 2

iiY  Equation 1 

 Here, the two data sets are the judgments of the operator and the corresponding true states of 
the situation being judged.  These two sets are used to form n pairs, where one element of the 
pair comes from each set (Yi and Oi denote the ith judgment and ith true state respectively).  When 
the judgments are perfect, MSE is equal to zero.  As a replacement for the correlation coefficient, 
MSE would be unremarkable except that it can be partitioned into three distinct components 
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representing shape, scale, and magnitude. Here, we present the decomposition proposed by 
Murphy (1988), introducing first, however, his skill score (SS) measure of judgment quality. 

The Skill Score as a Measurement of Judgment Quality 

 To develop his decomposition of MSE, Murphy (1988) used the concept of skill, which he 
defined as judgment performance above chance. Chance performance is defined to be the degree 
of correspondence that would be obtained had a person always provided the same (constant) 
judgment based on the average, base-rate value of the situations being judged.  In Equation 2, the 
quality of this standard is the MSER that would be expected if the standard were always used. 

( ) ( )∑ −= 2
iR OOn

1MSE
 Equation 2 

 Here O is the mean, or base rate, of the observed event being judged.  Deriving the skill 
score requires measuring the ratio between the MSE of the operator’s judgment (Equation 1) and 
the MSE of the standard (Equation 2).  This ratio is then subtracted from unity to create the skill 
score (SS).  This relationship is shown in Equation 3. In this basic form, the skill score provides 
overall evaluation of the quality of an operator’s judgments as compared to chance.  When SS is 





−=

R

Y
MSE

MSE1SS
 

Equation 3 

positive, the operator's judgments are better than chance (MSEY < MSER); when it is zero, the 
judgments of the operator are equal to chance performance (MSER = MSEY); and when SS it is 
negative, the operator's judgments are worse than chance (MSEY > MSER).  

Murphy’s (1988) Decomposition of the Skill Score 

 Murphy (1988) developed the SS to enable the MSE to be decomposed.  By substituting the 
equations for MSEY (Equation 1) and MSER (Equation 2) into the form of the skill score 
(Equation 3), Murphy (1988) showed how to derive the desired decomposition.  A conceptual 
representation of his decomposition is presented in Equation 4: 

Judgment Quality (SS) = [Shape (correlation) – Scale Error – Magnitude Error]    (Equation 4) 

Here, the Skill Score (SS) is partitioned into three components, and thus shape (correlation) is 
separated from errors associated with differences in magnitude and scale.  The result is a more 
sensitive and diagnostic measurement than correlation alone (which measures only shape 
similarity).  The scale error component has been called Regression Bias, as it measures whether 
the operator has appropriately scaled judgmental variability to situational variability.  It is zero 
when the slope of the regression line predicting the observed events from the operator's 
judgments is 1.0 (Stewart and Lusk, 1994).   For example, a submarine sonar technician with a 
regression bias might on average judge the range of an approaching enemy to be between 20 and 
100 NM, when the actual interval of ranges is between 50 and 80 NM.  A regression bias is a 
tendency to produce judgments in either a smaller or larger range than in the actual situation. 
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 Finally, the magnitude error component of Murphy’s Equation 4 has been called Base Rate 
Bias (Stewart, 1990).  It measures the overall (unconditional) bias in the operator’s judgments, 
thus diagnosing a tendency to over- or underestimate the judged situation.  This bias equals zero 
only when the mean of the operator’s judgments equals the mean of the judged states (i.e., the 
objective base rate, and is non-zero when the mean operator’s judgment is too high or low). 

 Murphy’s decomposition of the skill score provides a sensitive measure of the judgmental 
components of situation awareness, as it disentangles the joint contributions of shape, scale, and 
magnitude in the measurement of judgment quality.  The mathematical decomposition is 
presented below in Equation 5, and its components are summarized in Table 1. 

( ) ( ) 2

O

2

O

Y
YO

2
YO s

OY
s

srrSS 



 −−










−−=

 
(Equation 5) 

Component Name Description 

SS Skill Score A relative measure of "actual" judgment quality. 

rYO Correlation 
Coefficient 

Shape—degree of linear association between 
judgments and situation.  "Potential" skill in 
judgment. 

2

O

Y
YO s

sr 










−  Conditional/ 

Regression Bias 

Scale—degree that standard deviation of 
judgments accounts for imperfect correlation; for 
the bias to vanish, sY must be adjusted to equal 
rYO(sO). 

( ) 2

Os
OY





 −

 
Unconditional/  
Base Rate Bias 

Magnitude—degree that average judgment 
equals the base rate of occurrence in the situation. 

Table 1.  Components of Murphy's (1988) decomposition of the skill score 

Augmenting the Skill Score with the Lens Model Equation 

 The decomposition of the skill score, as shown in Equation 5 and Table 1, can improve the 
diagnosticity of the judgmental components of SA.  Additional diagnosticity can be gained by 
taking this decomposition one step further by decomposing the correlation coefficient (rYO).  To 
do so, consider a more detailed depiction of Brunswik’s lens model as shown in Figure 3. 
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Figure 3.  Brunswik's lens model. 

 The lens model shares the same configuration as Figure 1, yet depicts information as an 
enumerable set of cues, or items of information (labeled Xi’s).  Recall that Brunswik measured 
achievement (the top arc in Figure 3) as a linear correlation, in our case, rYO. Each relationship 
between a cue and a situation can be assigned an ecological validity, or the degree to which a cue 
informative about the situation.  In addition, each relationship between a cue the degree to which 
it is relied on by an operator can be assigned a cue utilization. The lens model can be used to 
further decompose Murphy’s Skill Score by examining the relations among these variables. 

The Lens Model Equation 

 One of the most important extensions to Brunswik’s lens model was the development of the 
lens model equation (Hursch, Hammond, and Hursch, 1964; Tucker, 1964).  The lens model 
equation (LME) provides a mathematical representation of the lens model and partitions the 
overall correlation represented by the level of achievement or rYO into correlations related to 
ecological validities of cues, cue utilizations, the predictability of the environment, and the 
consistency with which an operator implements his or her judgment (cue-weighting) strategy. 

 At the basis of the LME are two parallel models, which represent the Situation side and the 
Operator side of the lens model shown in Figure 3.  Both models are typically implemented with 
multiple linear regression models, but this need not be the case (e.g., see Rothrock and Kirlik, in 
press, for a discussion of this issue and an alternative formulation in terms of rule-based 
modeling).  The situation model describes the overall correspondence between the cues (Xi’s) 
and the situation (O), and the operator model describes the overall correspondence between the 
cues (Xi’s) and the operator’s judgment (Y).  Based on these two models, the resulting 
decomposition of achievement is depicted conceptually in Equation 6. 

(rYO) = Environmental Predictability x Consistency x Knowledge + Error  (Equation 6) 
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Environmental Predictability (or equivalently situational predictability) is the correspondence 
between the cues and the situation. Consistency is the  correspondence between the cues and the 
operator’s judgments as reflected in the operator model.  Thus, a lower correlation between the 
cues and judgment behavior is less than fully predictable based on knowledge of the cues. 

 Knowledge is the degree of correspondence between the outputs of the situation and the 
operator models. Outputs from these models represent the predictable aspects of the situation and 
operator based on their respective degrees of correspondence with the cues.  This component is 
called Knowledge because it indicates the degree to which the operator correctly models the 
regularities of the situation, or weights the cues adaptively. Model Error in Equation 6 is the 
degree of correspondence between the unpredictable portions of the situation and operator 
models.  Typically, this value is found to be marginal in human judgment (Brehmer, 1994). 

2
X.O

2
X.YX.YX.OYO R1R1CGRRr −−+=  Equation 7 

As discussed previously, the decomposition shown in Equation 7 is accomplished with multiple 
linear regression.  Thus, Environmental Predictability, Consistency, Knowledge, and Model 
Error are measured using multiple correlation statistics.  The mathematical form of the LME is 
shown above in Equation 7, and its components are summarized below in Table 2. 

Component Name Description 

rYO Achievement Correlation between judgments and situation 

RO.X Environmental 
Predictability Correlation between situation and cues 

G Knowledge Correlation between the model of the situation and model of 
the operator 

RY.X Consistency Correlation between cues and judgments 

C Model Error Correlation between the residuals (or errors) in both models 

Table 2.  Components of the lens model equation 

THE EXPANDED LENS MODEL 

 To integrate the benefits of both the LME’s decomposition of achievement and Murphy’s 
(1988) decomposition of the skill score (SS), Stewart (1990) presented a single equation showing 
how these decompositions could be combined.  In Stewart's model, rYO from the SS in Murphy's 
decomposition (see Equation 7) is expanded using a partial form of the LME (one excluding the 
typically negligible C or error component). A conceptual form of Stewart's decomposition is 
presented below in Equation 8 and its mathematical form is presented in Equation 9.   

 The first three terms in Equation 8 are from the LME decomposition of rYO.  These three 
terms are respectively translated into the first three measures shown in Equation 9.  The last two 
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terms in Equation 8 (Scale Error and Magnitude Error) remain unchanged from Murphy's 
original decomposition of the SS.  They are translated into the last two measures of Equation 9: 

 SS = Env. Predictability x Knowledge x Consistency – Regression Bias – Base Rate Bias (Eq. 8) 

( ) ( ) 2

O

2

O

Y
YO

2
X.YX,O s

OY
s

srGRRSS 



 −−










−−=

 
Equation 9 

The Expanded Lens Model 

 When considering the structure of the model presented in Equations 8 and 9, Stewart and 
Lusk (1994) recognized that Environmental Predictability (the correlation between the cues and 
a situation) could be further decomposed into two aspects: (1) the process that extracts data from 
the situation and (2) the process that transforms extracted data into cues available to the operator.  
These two processes represent a sequence typical in many systems with interface technology.  
 For example, in a submarine the first process is represented by the sensing technology that 
gathers raw data from the underwater environment.  The second process is represented by the 
fusing and display technology that transforms this data into the cues presented to the operator.  
Note that in this example, noise in the sensors or underwater environment can be passed on to the 
raw data, which can ultimately be passed on to the cues.   

 Decomposing Environmental Predictability into a two-stage sequence provides a more 
diagnostic description of the situation-information relationship.  Moreover, it can help to identify 
constraints, such as malfunctioning sensors, that attenuate higher degrees of correspondence.  
This sequence of “technological information processing” is presented above in Figure 4.   

Ti's

Situation

1

O

Descriptors Primary
Cues

2

Xi's

 

Figure 4.  Two-stage sequence of technological information processing. 

 As shown in Figure 4, the two stages are labeled [1] and [2].  Stage [1] depicts the extraction 
of data or descriptors (labeled Ti’s) from the situation.  In Stage [2], these descriptors are 
transformed into the primary cues provided to the operator via interface displays.  The thickened 
outlines around both the descriptors and the primary cues indicate their status as sets. Note that 
the situation and primary cues (O and Xi’s, respectively) correspond to the situation and cues 
depicted in the traditional lens model. 

 In a similar manner, Stewart and Lusk also recognized that Consistency, a measurement of 
the correspondence between information (cues) and operator judgments, could be further 
decomposed into two processes: (1) the process that an operator uses to acquire information, and 
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(2) the process that the operator uses to transform that information into a judgment. Akin to the 
previous sequence of technological information processing, errors or noise in the first process 
can be passed on to the second and ultimately constrain judgment quality.  

 Decomposing Consistency into a two-stage sequence increases the diagnosticity of the 
description of the information-operator relationship.  Moreover, it can help to identify human 
information processing constraints that attenuate higher degrees of correspondence.  The two-
stage sequence of “operator information processing” (IP) is presented above in Figure 5. As 
shown in Figure 5, the two stages of operator IP are labeled [1] and [2].  Stage [1] depicts the 
operator’s acquisition of secondary cues (labeled Ui’s) from primary cues.  In Stage [2], these 
secondary cues are transformed into a judgment. The primary cues in Figures 4 and 5 are the 
same. 

Primary
Cues

1

Xi's Ui's

Secondary
Cues

2

Judgment

Y

 

Figure 5.  Two-stage sequence of operator information processing. 

 Operator IP shown in Figure 5 represents a sequence common to many IP models of SA.  For 
example, Endsley’s (1995b) three-level description characterizes SA as (1) perception of 
elements in the situation, (2) comprehension of the situation based on a transformation of those 
elements, and (3) a judgment of the future states of those elements.  When judgments are made 
of future states (e.g., the likelihood of a collision with an approaching aircraft), the two-stage 
description in Figure 5 maps to Endsley’s first and third levels, where secondary cues (Ui’s) are 
mapped to Endsley’s Level 1 SA, and the operator’s judgment (Y) is mapped to Endsley’s Level 
3 SA. Level 2 SA could be mapped to the Knowledge measure, or adaptation to a task's cue-
criterion relations. Endsley's definition does not include the two-stage technological IP depicted 
in Figure 4, since it does not span the interface-mediated, human-environment system. 

 By inserting the sequences of technological IP and operator IP into the lens model, Stewart 
and Lusk (1994) developed the graphical form of the expanded lens model (ELM).  The result is 
shown in Figure 6. Figure 6 maintains the basic configuration of the lens model, but shows the 
sequence of technological IP inserted into the situation side, and the sequence of operator IP 
inserted into the operator side. Expanding the LM in this manner introduces a new set of 
relationships between the model's components.   
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Figure 6. The expanded lens model (ELM). 

 For technological IP, Stewart and Lusk (1994) used correlations to measure the two relevant 
correspondences: (1) between the situation and the descriptors and (2) between the situation and 
the primary cues.  Calling the correlation between the situation and primary cues RO.X and the 
correlation between the situation and the descriptors RO.T, Stewart and Lusk derived Equation 10. 
This equation shows the decomposition of RO.X  into the product of RO.T and the ratio of RO.X to 

X.TT.O
T.O

X.O
T.OX.O VRR

RRR =




=

 
Equation 10 

RO.T (labeled VT.X).  VT.X is called the Fidelity of the Information System (Stewart and Lusk, 1994).  
It captures the proportion of the variance within the descriptors, relative to the situation, that is 
maintained in the primary cues.  For example, a submarine with display technology that perfectly 
transformed sensor information into the cues displayed to an operator would have high fidelity 
(i.e., VT.X would equal one and thus RO.X  would equal RO.T).  Note that these circumstances do not 
guarantee that the task environment is completely predictable; i.e., RO.T could still be less than 
one (e.g., the underwater environment may be inherently noisy). 

X.UU.Y
U.Y

X.Y
U.YX.Y VRR

RRR =




=  Equation 11 

Treating operator information processing analogously (see Equation 11), the complete 
mathematical form of Stewart and Lusk's expanded lens model is shown below in Equation 12: 
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Equation 12 

 Seven components comprise the final ELM decomposition. Components [6] and [7] are the 
regression and base-rate biases discussed previously. Components [1]-[5] result from 
decompositions of Achievement, Environmental Predictability, and Consistency from the LME.  
Component [3] survives from the original LME and represents the operator's adaptation to cue-
criterion correlations.  Components [1] and [2] capture the quality of the technological sensors 
that extract data from the situation ([1]), and the technological IP transforming it into the cues 
presented to the operator ([2]).  Components [4] and [5] capture the quality of the operator IP 
that acquires the primary cues to form secondary cues ([4]), and transforms these secondary cues 
into a situational judgment ([5]).  These components are summarized in Table 3. 

ELM Component Name 

 SS Skill Score 

(1) RO.T Environmental Predictability 

(2) VT.X Fidelity of the Information System 

(3) G Knowledge 

(4) VU.X Consistency of Information Acquisition 

(5) RY.U Consistency of Information Processing 

(6) 
2

O

Y
YO s

sr 










−

 
Regression Bias 

(7) ( ) 2

Os
OY





 −

 
Base-Rate Bias 

Table 3. The Components of the Expanded Lens Model 

Practical Considerations in SA Measurement  

 Modeling and measuring interface-mediated SA using this approach requires that the 
judgment task be analyzed in accordance with the structure depicted in Figure 6: the situation 
must be defined as a criterion to be judged, the operator's task must be defined in terms of the 
judgments to be made, and information must be defined as a set of cues.  Moreover, to 
implement the (typical) regression modeling procedure, both situation and judgment must be 
assigned quantitative values, and the numerical characteristics of the cues, such as their values 
and ranges, must be defined. This may not always be possible, or natural, and of course the 
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model can make high demands for data collection due to the need to individually estimate its 
many diagnostic parameters (e.g., see Bisantz, Kirlik, Gay, Phipps, Walker and Fisk, 2001).  

 In addition to these limitations, the approach is not equipped to investigate all aspects of SA. 
For example, cognitive constructs such as memory, mental pictures, attention, and schemata 
(Endsley, 1995b; Wilson, 1995), are outside the purview of the ELM.  Furthermore, the approach 
is not equipped to capture the relationships between SA and communication (Schreiber, Bell and 
Raspotnik, 1998), or the emotional and phenomenological aspects of SA (Gerson, 1997). 

RELATED APPROACHES 

 We have already discussed the relationship between our technique for modeling and 
measuring SA and Endsley’s more cognitively-oriented theory of SA. Note that in every case we 
were able to portray these relationships as complementary: each approach addresses issues the 
other does not, and where overlap exists, we have shown that a systems-oriented approach may 
provide additional resources for measuring IP-related, theoretical constructs embodied in 
Endsley’s theory. Similarly, we believe that the systems approach has a synergistic relationship 
with two additional, influential lines of thinking in human factors and cognitive engineering. 

Human-Automation Interaction  

 Parasuraman, Sheridan and Wickens (2000) provided a framework for human-automation 
interaction (HAI) by defining four “stages” of automation. Stage 1 automation concerns the 
acquisition of information from the task environment. Stage 2 represents a processing, fusing, or 
filtering of this information prior to information display. Stage 3 concerns decision support in 
selecting a course of action. Stage 4 concerns action implementation. For a review including a 
variety of applications of this framework to studies of HAI, see Wickens and Xu (2003). 

 Various components of our SA modeling and measuring technique map directly onto 
Parasuraman et al.’s framework. For example, the model decomposes overall task predictability 
(from the operator’s perspective) into its environmental predictability and the predictability 
inherent in the fidelity of sensing and (automated) IP system. These measures could be used to 
assess, and perhaps predict, the impact of additional sensors (Stage 1 automation) or data fusion, 
filtering, etc. technology (Stage 2 automation). More generally, our approach to SA modeling 
allows one to diagnose and localize any positive or negative effects of automation on various 
measures (e.g., to consistency of information processing, to task knowledge, etc.) We believe 
that used collectively, the Parasuraman et al. framework and systems-oriented, ecological 
approach may advance understanding of the impact of various types of automation on SA. 

Naturalistic Decision Making 

 The Naturalistic Decision Making (NDM) paradigm (Klein, 1999), has come to represent a 
broadened view of judgment and decision making, with a focus on studying "how people use 
their experience to make decisions in field settings” (p. 97). It is crucial to note that, like NDM, 
the present systems approach to SA measurement and modeling does not have its basis in either 
classical decision theory (CDT) or behavioral decision making (BDM) approaches to the study 
of cognition. Both of those approaches have their foundation in models based on the internal 
coherence of cognition (e.g., expected utility theory, Bayes theorem, etc.). Like NDM, we 
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instead use a correspondence-based approach, where cognition and behavior are evaluated in 
terms of adaptive achievement (for a discussion of the contrast between coherence- and 
correspondence-based approaches, see Hammond, 1999). 

 There are substantive ties between the two approaches as well.  First, NDM acknowledges 
that environmental uncertainty places a ceiling on achievement. As Lipshitz, Klein, Orasanu, and 
Salas (2001a) have (qualitatively) put it, “Uncertainty is intimately linked with error: the greater 
the uncertainty, the greater the probability of making an error” (p. 339). Second, NDM, due to its 
historical roots in Klein’s Recognition-Primed Decision (RPD) model, places a heavy emphasis 
on identification of diagnostic cues (Klein, 1999) supporting inference (e.g., Crandall and 
Getschell-Reiter, 1993). Third, owing to the methodological roots of the present approach in the 
work of Brunswik (1956), our approach to the study of SA shares with NDM the goal of 
“conducting one’s study with representative samples of subjects. task. and contexts to which one 
wishes to generalize” (Lipshitz, Klein, Orasanu, and Salas, 2001b, p. 386).  

 Where our approach may differ from NDM, however, is that we do not necessarily agree that 
scientific research should include, as an “essential characteristic” a commitment to “informal 
modeling” (italics our emphasis, from Lipshitz et. al, 2001a, pp. 334-335). NDM’s commitment 
to informality seems to us to arise out of its cognitive rather than ecological focus: “NDM places 
the human . . . at the center of interest and as its basis for prescription” (Lipshitz et al., 2001a, p. 
333). As such, like the work of Endsley discussed previously, NDM places a premium on the 
richness of its psychological constructs (e.g., “mental pictures,” “metacognition,” etc.) as these 
are seen to be required to paint a faithful phenomenological account of naturalistic cognition.  

 We recognize the value of naturalistic observation, and have made it a point to admit that our 
techniques do not capture all of the possible dimensions of SA. However, our view is that, while 
premature formalization is not appropriate, aiming toward increased formality should remain a 
guiding light in human factors, as with formality comes abstraction, the central means by which 
generalization can be assured, or at a minimum, can be empirically tested and evaluated. 

CONCLUSION 

 We have presented a systems-oriented, ecological perspective on modeling and measuring 
interface-mediated SA. While the approach does not speak to every theoretical construct, or deal 
with every phenomenon previously claimed to contribute to SA, we do believe it should be 
considered as an addition to the human factors toolbox, as advances in theory and application 
depend on advances in measurement. We have also discussed how our methods complement 
related approaches, not only to SA, but also to HAI and NDM. Viewed abstractly, our techniques 
support separating signal and noise in the performance of uncertain tasks. We appreciate that the 
data needed to implement these techniques may be inconsistent with the realities of field studies.  
Thus, we naturally do not recommend these methods for every study touching on SA issues.  

 We note, however, that these techniques, seen as tools for filtering signal and noise in 
behavior in uncertain situations, are also useful for measuring the degree to which any claims 
about internal psychological processes can be sustained based on sparse data sets. While the need 
for extensive sampling of both situations and behavior in uncertain tasks can be viewed as a 
legitimate limitation of our approach, this same issue should caution us about the reliability of 
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any inferential technique used to identify the factors contributing to SA based on sparse data sets. 

 A companion article (Strauss and Kirlik, 2003) describes the first empirical test of the utility 
of this SA modeling and measurement approach, in diagnosing and isolating the effects of both 
display design differences, and also individual differences in SA achievement. 
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